TECHNICAL SPECIFICATIONS # TemisFlow™ Basin Modeling & Petroleum System Modeling # Software Presentation TemisFlow[™] is the best-in-class solution for multi-dimensional basin modeling. Built upon 30 years of R&D for numerical modeling of petroleum systems, it enjoys a unique reputation for scientific rigor and sound physical basis. TemisFlow™ unified workflow offers the following key stages: - Present day model building (1D, M1D, 2D, 3D) - Restoration through time - Simulations (temperature, maturity, expulsion, pressure, migration) - Calibration - Post-Processing TemisFlowTM applicability ranges from regional resources evaluation and play assessment, prospect generation and ranking to pre-drill risk assessment, including drilling optimization in overpressured areas. TemisFlowTM has also expanded its capabilities to address energy transition needs such as deep geothermal energy, basins' natural hydrogen potential, and CO2 storage. # Functionalities & Algorithms #### SCENARIO MANAGER - Step by step workflow - Tracking of the modifications and hypothesis through a Scenario Tree - No duplication of unmodified data #### GEOLOGICAL FRAMEWORK AND GRID - 1D. M1D. 2D or 3D - User-defined extractions to build consistent simulation grids - Task manager for quality control and automatic corrections - Interactive 2D and 3D edition - Easy to update #### **BACKSTRIPPING** - Interactive backstripping decoupled from simulation - Visualization of the grid evolution through time in pre-processing #### ADVANCED RESTORATION PROCESS - Hiatus and multiple erosion events - Multi-layers thickness variations - Multiple lithology changes through time #### SALT RESTORATION - Multi-layer Thickness Variations and/or Lithology Changes Events for salt diapirism and canopies development - Direct volume computation from thickness maps for QC - Automatic routine based on basin regional tectonics and accounting for sediment loading effect on diapirism #### MAP EDITOR - Handles horizons, property maps, clouds of points and grids - Multi map visualization - Interactive drawing, painting, and mesh edition - Multiple variable operations, attributes and mapping computations: interpolation, smoothing, normalization, gradient, curvature... - Fault digitalization as polylines or polygones #### STRUCTURAL CLOSURE AND DRAINAGE AREAS COMPUTATION - Fast and direct computation on maps (structured or unstructured horizons) - Accounts for reservoir porosity and thickness, as well as faults - Filtering and reporting on traps of interest - Possibility to export as polylines all generated traps and drainage areas #### LITHOLOGY MANAGEMENT - IFPen databank with reference lithologies - Creation of user-defined or mixed lithologies - Possibility to tune and define: - Depth-compaction curves - Permeability (thanks to Kozeny Carman, log(K) or user defined laws) - Thermal conductivity and radiogenic production - Relative permeabilities and capillary pressure curves #### **DIAGENESIS** - Chemical compaction for sandstone and chalk through pressure-dissolution phenomenon - Chemical compaction for mudstone with dissolution of kaolinite or smectite, transport and mineral precipitation of illite #### **GEOCHEMICAL INFORMATION** - Laterally variable Initial TOC, Initial HI and Net to Gross for each Source Rock - IFPen or BP schemes with their associated databank - Definition of all kinetics parameters for HC fractions and Source Rocks (viscosity, thermal reactivity, phase behavior...) - User-defined multi-compositional HC systems and kinetic schemes - Primary and secondary thermal crackings - User-defined Vitrinite-Transformation Ratio law ### **UNCONVENTIONAL RESOURCES** - Computation of adsorbed HC quantities controlled by TOC evolution, pore pressure, temperature, kerogen kinetic, carbon mass balance and HC density - Organic porosity calculated according to kerogen cracking - Both processes fully coupled with expulsion and Darcy's migration simulations #### **BIOGENIC GAS** - Definition of labile (available to microbial activity) and labilizable (requiring a preliminary maturation) organic matter to assess biogenic gas generation - Adsorption, dissolution and free transport of the biogenic gas - Fully coupled with thermogenic processes #### **BIODEGRADATION** - Biodegradation process fully coupled with Darcy's migration - Sensitivity to biodegradation definition for each component - Bacterial activity controlled by temperature and pore space - HC phase composition and viscosity affected throughout migration process ## INTERNAL SOURCE POINTS - Definition of time-dependent sources to model deep gas sources (CO2, H2, He, H2S...) or CO2 injection - Possibility to tune depth, location, and generated amount of sources - Specific dissolution laws for generated gas (CO2, H2S, H2, and He) ### HYDRATES AND TSR OCCURENCE RISK - Risk given in residence time in the favorable window - Computed for all cells and at all ages of the grid ### THERMAL BOUNDARIES • Several conditions: surface temperature, temperature at base upper mantle, temperature gradient, heat flow at base sediments or base upper mantle - Automatic computation of surface temperatures from paleobathymetry and paleogeographic position during continental drifting - Extraction of heat flow values at base of sediments from a simulation with advanced basement to remove the crust and reduce computation time #### ADVANCED THERMAL BASEMENT - McKenzie or user-defined approach - Complete description of the lithosphere accounting for heterogeneities both in structure and nature - Homogeneous or heterogeneous rifting (geometric and thermal beta factors) - Lithology changes through time - Coupling of the lithosphere with the sedimentation of the model - Strong thermal conductivities heterogeneities handling - Blanketing effect modeling #### LATERAL BOUNDARIES - User-defined boundaries to assign specific pressure and temperature conditions at the model edges through time - Several pressure types to define: No Flux, Hydrostatics, Water-Head, Constant Pressure or Overpressure #### PIEZOMETRIC SURFACES - Definition at each time step of the water table depth - Handles arid areas (below Sea Level) and lakes (above Top Sediment) #### **GEOMECHANICAL STRESS** - Definition of the basin horizontal deformation, in extension or shortening, at each time step - Automatic assessment of the corresponding horizontal stress with impact on porosity, permeability, and pressure computation #### FULLY COUPLED AND PARALLELIZED SIMULATIONS - Temperature, Pressure, Expulsion, decoupled or full Darcy Migration - Non-compositional or multi-compositional simulations - PVT computation through time - Tuning of time steps and simulation control criteria - Possibility to use temperature regime from a previous simulation - Parallelization on several processors #### MAP BASED RAY TRACING SIMULATION - Traps and drainage areas computation through time - Accounts for basin deformation history - Multiple source rocks and multiple reservoirs - Accounts for petrophysical properties, lateral variations, stratigraphic trapping and faults - Based on expulsion or migration simulation to predict trapped Gas/Oil volumes with API degree, GOR and column height - Upward or downward migration from source rock layers # Results Analysis #### THERMAL AND MATURITY PROPERTIES - Temperature regime and recoverable heat in place - Maturity indicators: Vitrinite Reflectance, Tmax, S2 - Various TOCs: Rock-Eval TOC, Current TOC, Residual Solid TOC - Source Rock Maturity Timing #### PRESSURE PROPERTIES - Water Pressure and Overpressure - Mud Weight - Effective Stress (lateral and vertical components) - Hydraulic Fracturing ### **EXPULSION AND MIGRATION PROPERTIES** - Adsorbed and retained masses - Expelled and Migrated masses in free and dissolved phase - HC Phase Saturation - Biodegradation Index - PVT properties: Volumes, API Degree, BO, BG... #### CO2 STORAGE SITE CHARACTERIZATION - Risk assessment for site identification - Plume and dissolved CO2 volumes - Long-term pressure pertubartion # NATURAL H2 AND ACID GASES • Free and dissolved volumes in place ### **BUNCH OF VISUALIZATION TOOLS** - 3D Viewer - Map Viewer - Cross Plot Viewer - Cross Section Viewer Log Viewer - Statistics Viewer #### DATA EXTRACTION & CALIBRATION • Burial analysis - Map extractions Well extractions - Log pressure analysis - Cell history - Section extractions #### FILTERING & REPORTING - Filtering capabilities on simulated output - Synchronization between viewers - Statistics and quantitative report on areas of interest # Data Managelhent #### DATA IMPORT/EXPORT The following formats are available: - Horizons in ASCII cloud of points, CPS3 ASCII and binary, Fraca, GMap, gOcad TSurf and Z-Map+ - Property maps in ASCII cloud of points, CPS3 ASCII and binary, Fraca, GMap and Z-Map+ - Cultural data in shape files and .leg format - Polylines in ASCII, CPS3 and Z-Map+ - Well paths and logs in ASCII, LAS 2.0 and 3.0, and OBDAT2 - Faults in CPS3 ASCII and binary, Fraca, EarthVision, gOcad TSurf and Z-Map+ - 2D section templates in .ext format and flat file - Lithology and geochemical libraries in .xml and .ltds formats - Stratigraphic scales in .temis format - Temis Suite studies (1D, 2D, and 3D) - Seismic in XML and SEG-Y - 3D grid in GRDECL and RESQML - Templates, preferences and color scales from OpenFlow™ - · Groovy scripts and packages - Data exchange between OpenFlow Suite projects - MySQL or Oracle database - Improved data security and integrity, reduced data storage - User and project administration ### OTHER PLATFORM FACILITIES - Colorscale & unit system management - Remote machines or cluster simulation launcher - Simulation monitoring - Online & contextual Help - Direct link with CougarFlow® for sensitivity and risk analysis and assisted calibration - Direct link with DionisosFlow® for elaborate facies, kerogen, and paleobathymetry maps - Direct link with KronosFlowTM for advanced 2D restauration in structurally complex environment - Petrel link for direct maps, wells, faults and grids exchange - · Scripting facility based upon Groovy language #### • Operating Systems: - Supported on Windows 10, Compatible with Windows 11 - Linux Red Hat 7 and Red Hat 8 for calculators only (unavailable GUI) - RAM: 48 Gb or more recommended, 32Gb minimum - Minimum free disk space: 5 Gb (for installation files) - CPU: x86-64 processors (Opteron, CoreDuo, Core2Duo, Xeon & EMT64, Nehalem, Westmere, Sandy Bridge, Core i3, i5, i7) - Dualcore or Quadcore: 2 GHz or more recommended - Graphics board: NVIDIA (except Quadro FX 1000, Quadro FX 3500, Quadro NVS 110 M, Quadro NVS 280 SD and NVS 300) with recent driver (at least OpenGL 3.3 -driver 330 or later) - Openmotif rpm package must be installed on Linux - Database: MySQL 5.5, 5.6.X (with X superior to 22), 5.7 or 8.0 and Oracle 12c, 18c or 19c - FlexLM 11.16.2 server for licensing **Beicip-Franlab Headquarters** 232, avenue Napoléon Bonaparte 92500 Rueil-Malmaison - France Tel.: 33 1 47 08 80 00 Email: info@beicip.com