TECHNICAL SPECIFICATIONS

Software Presentation

Through a multiple realizations approach based on experimental design and state of the art optimization algorithms, CougarFlow aims at reducing the number of simulation runs to properly explore the possible solutions of a model. CougarFlow is seamlessly linked to DionisosFlow and TemisFlow on the OpenFlow Suite platform to allow:

- A thorough screening of uncertainties on a given range of input parameters and their influence on key simulation outputs;
- Uncertainty analysis for quantifying parameters impact and associated optimization.

Functionalities and Algorithms

UNCERTAIN PARAMETERS

- Scalars such as diffusion coefficients, thermal conductivities...
- Curves such as sea level curve, permeability/porosity curve...
- Maps such as bathymetry maps, initial TOC maps...
- Possibility to group parameters with metaparameter option

EXPERIMENTAL DESIGN

- From the simplest to the more complex: Classical, Full, User defined, Latin Hypercube, and D-Optimal designs for uncertain domain sampling
- Responses of interest: scalar or multi-age results of interest originated from grid results

RESPONSE SURFACE APPROACH

- Algorithms to compute Parametric (Least Angle Regression Square) and Non-Parametric Response Surface Models (Kriging)
- QC tools to analyze and validate the Predictivity of Response Surface Model: Spider and Tornado plots, Cross plot and Quality Indicators such as Predictivity Q2 and Predictivity with confirmation runs Q2 conf (blind tests)

GLOBAL SENSITIVITY ANALYSIS

- Qualitative and quantitative sensitivity analysis to determine the most influential parameters
- Automatic calculation of interactions between parameters

RISK QUANTIFICATION

- Uncertainty propagation to determine the range of potential values for a response (P10, P50, P90)
- Controllable uncertainty optimization to find a minimum on the surface response for an aid to calibration

EXTRAS

- Seamless link with DionisosFlow™ and TemisFlow™
- Link with third-party geo-modelers: Petrel™

Results Analysis

- Many viewers are available: histograms, cross-plots, graphs, logs, maps, cross-sections, 3D inherited histograms OpenFlow platform
- Filters and graphic settings
- Specific plots for uncertainty analysis: cross-plots, tornado plot, spider plot, Pareto plot

Data Management

DATA IMPORT/EXPORT

The following formats are available:

- Templates, preferences and color scales from OpenFlow
- Groovy scripts & packages
- Data exchange between OpenFlow Suite projects

DATABASE

- MySQL or Oracle database
- Improved data security and integrity, reduced data storage
- User and project administration

OTHER FACILITIES

- Unit system management
- Workflow manager: create, delete, configure, start, stop, load, restart, monitor a workflow...; manual and automatic launch/stop/restart/load
- Help through an online reference manual and contextual information
- Search tool
- Perspectives for display
- Workflow tree
- Host & Activity settings

Extensions and Customization

- Direct link to transfer data between Petrel and OpenFlow using an Ocean plugin
- Scripting facility based upon Groovy language

System Requirements

- Operating Systems:
 - Windows Seven 64 bits service Pack 1 and Windows 10
 - Linux RedHat 6.6
- RAM: 16 Gb or more recommended, 8Gb minimum
- Minimum free disk space: 5 Gb (for installation)
- CPU: x86-64 processors (Opteron, CoreDuo, Core2Duo, Xeon & EMT64, Nehalem, Westmere, Sandy Bridge, Core i3, i5, i7)
- Dualcore or Quadcore: 2 GHz or more recommended
- Graphics board: NVIDIA (except Quadro FX 1000, Quadro FX 3500, Quadro NVS 110 M and Quadro NVS 280 SD) with recent driver (at least OpenGL 3.3 -driver 330 or later)
- Openmotif rpm package must be installed on Linux
- Database: MySQL 5.5 or 5.6.X (with X superior to 22) and Oracle 11g or 12c
- FlexLM 11.13.1.3 server for licensing

