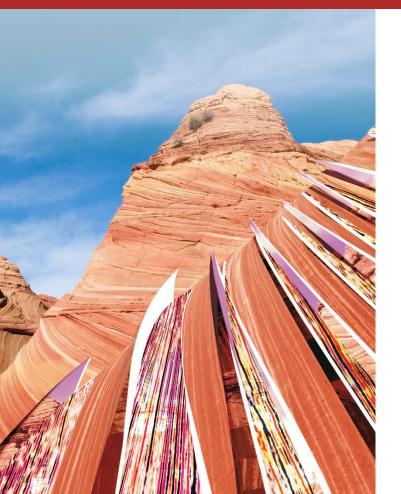


Release Notes InterWell 2023

Beicip Franlab Headquarters 232, avenue Napoléon Bonaparte 92500 Rueil Malmaison Cedex France support@beicip.com - www.beicip.com

RELEASE NOTES InterWell 2023

InterWell

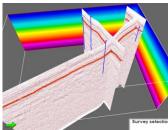

Seismic inversion, seismic characterization and time-depth conversion solution

The major InterWell 2023 release brings a lot of new functionalities :

- In the database, the multi-survey is supported, as well as many improvements in the import/export of the data.
- The gather conditioning has been enriched with a new mute picking and new pre-processing (mutes, trim statics...and more) to output better stacks for the seismic inversion workflows.
- Historical modules, such as wavelet estimation, structure and QCs have been either enhanced or revamped to best suit your needs.
- Machine learning features, such as PCA and Clustering, have been developed to be applied directly on key attributes.
- Advanced workflows, such as 4D or azimuthal workflow, have been completed by new functionalities to better estimate the anomalies.

Feel free to contact us at <u>support@beicip.com</u> if you need any assistance while installing the new version.

RELEASE NOTES | InterWell 2023


InterWell

Release 2023.1

What's new in the database ?

Multi-survey in InterWell : a study is now composed of different surveys

Multi-survey in the 3D

Undefined

Survey selection						
C Existing survey :	> 3D [3D]	*	Create r	iew survey :	NEW	
Geometry						
Automatic geometry ca	alculation (during	import of first volu	me) 🔷 Manual	geometry calcu	lation	
Transformation						
	INLINE X	LINE X	Y			
Corner 1						
Corner 2						
Corner 3						
Datum and replacement	nt velocity defin	ition Replacement	velocity 1,500	m/s		
Vertical ranges				Lateral limits		
The step m	ust be the same f	or all the wavefield tin	ne domaina 🌵 🐰		INLINE	XLINE
Min	Max	Step	Domain	Minimum		
Nor 1	MdA	Step	Domain	Maximum		
				Step		

Map mode

urvey selection							
Existing survey :	• O []]]		1	· Create r	new survey :	MAP	
ometry							
Automatic geometry c	alculation (d	uring import	of first volur	ne) 🔹 Manua	geometry calc	ulation	
Transformation							
	INLINE	XLINE	X	Y			
Corner 1	1	1	259,880	2,619,805			
Corner 2	500	1	360,000	2,619,805			
Corner 3	500	560	360,000	2,759,400			
Datum and replaceme	nt velocity	definition					
	in verbeity						
SRD 0		m Re	placement	velocity 1,500	m	5	
Vertical ranges					Lateral limit		
A 40 A 40 A 40 A 40 A 40 A 40 A	nust be the a	ame for all the	wavefield tim	e domains 🔹 🐰		INLINE	XLINE
				Land Land	Minimum	1	1
	Max		Step	Domain	Maximum	500	560
Min	INDA						
Min	IMON.				Step	1	000

Fully defined

Existing survey :) Seren			Create	new survey :	VOLUME	
eometry							
 Automatic geometry c 	alculation (c	turing import	of first volum	e) 💿 Manua	il geometry calc	ulation	
Transformation							
	INLINE	XLINE	Х	Y			
Corner 1	1	1	259,880	2,619,805			
Corner 2	500	1	360,000	2,619,805			
Corner 3	500	560	360,000	2,759,400			
SRD 0			eplacement v	elocity 1,500	m/	5	
Vertical ranges					Lateral limit		1100000
The step n	nust be the s	ame for all the	waveneid time	o domains 🏩 🕌	Minimum	INLINE 1	XLINE
	Max		Step	Domain	Maximum	500	560
Min							
Min 0		2000	-4	PP Domain	Step	1	000

- A name.
- An IL-XL to X-Y transformation.
- IL-XL ranges.
- Time ranges by wavefield domains

To be defined by the first SEGY import, historical way to create the survey, only way to create 2D survey • A name.

- An IL-XL to X-Y transformation.
- IL-XL ranges.
- Time ranges by wavefield domains.

A name.

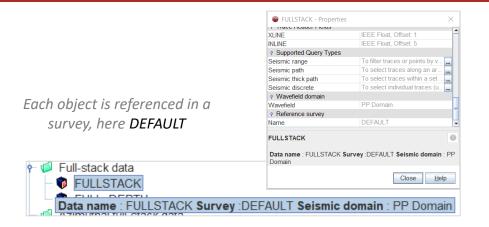
- An IL-XL to X-Y transformation.
- IL-XL ranges.
- Time ranges by wavefield domains.

Enable mapping functionalities of InterWell (gridding, smoothing, kriging...)

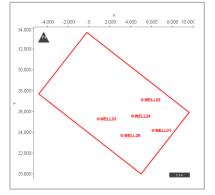
Linked to surveys

 Seismic volumes and arbitrary lines Horizons/Maps
 Calibrated and extraction wells
 Runs (computation in InterWell)

Free of survey


Input Wells
 Pointsets
 Polygons
 Tables

Key benefits :


- A unique well database covering different 2D/3D surveys.
- Possibility to decimate, merge, krige horizon/map data covering several surveys.
- A unique study gathering a 1ms grid and regular vertical grid for stochastic inversion workflow.
- A unique velocity model to convert several 2D lines.

The survey in InterWell

The survey is defined as a polygon, as it can be empty of data

Show/Hide elements in the Study tree X Filter by survey Geometry A Visible

	Show all sub-folders	Hide empty sub-folders
	Name 🔺	Visible
4D		V
Core M	odules	V
Data		×
	e Characterization	×.
Geostatistics		×
	Characterization	×
Multi-Azimuth		×
Multi-Component		×
Time-D	lepth conversion	N
		Ok Cancel

In some modules, the survey must be informed, such as Trend modeling

InterWell Trend Modeling Window (TD_INVERSION_SISMIQUE) a" b" IZ Pointset MK0 Id. column Well Name Attribute column Z Value Selected Label MELL03 1.946 W WELL03 1.945 W WELL03 1.946 W WELL04 1.961 W WELL04 1.961 W WELL04 1.961 W WELL04 1.961		© DEFAULT [3D] © GEOSTAT [3D] © NEW_SURVEY [3D]	V V
Image: WELLOY 1,941.88 WELLOY 1,941.88 Select data Unselect d Destination Survey : NEW_SURVEY [3D] Image: Constraint map Select (constraint map Sele	The survey tree can be filtered by surveys	Show all sub-folders Name 4D Core Modules Data Fracture Characterization Geostatistics Mutir-Component Time-Depth conversion	Hide empty sub-folder

Migrate a horizon from a survey to another

Migrate horizon or map to other survey			
Origin survey	♦ DEFAULT [3D]		
Horizon / Map	🈻 H1 💌		
Destination survey	⊗ NEW_SURVEY [3D]		
Ouplicate management met Closest Average			
Output name	Migrated_H1		
	Ok Cancel		

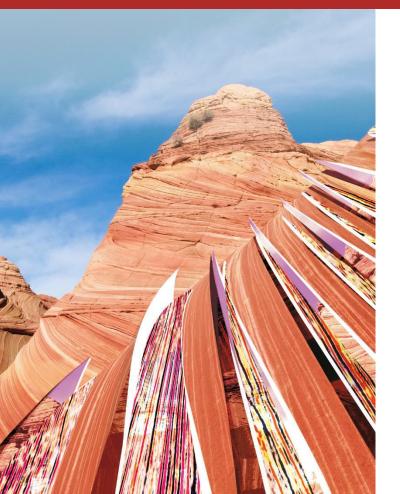
A new workflow to combine a map/horizon from different surveys

Merge several horizons/maps to create a new one, with priority in case of redundant locations

lerge h	orizons / maps		×
Horizon	🞇 horizon1cut	-	×
	Priority	Attribute	1
	1	H1	-
	2	part1	
	3	part2	
The highest p	nriority is 1, and decrea	ases while the priority number increa	ases
Output nam	e Merged		
	[Ok Cancel He	elp

Shift of the TD law with management of the first layer (for velocity workflow)

TD law value shift ×	
Parameters	
Value shift -20 First values bound	
Progressive shift application at first values	
First changed 300 m	
Set new law as preferred	
Curve Name Shifted	
Ok Cancel <u>H</u> elp	
Avoid common velocity anomalies at the to	op of


your velocity model

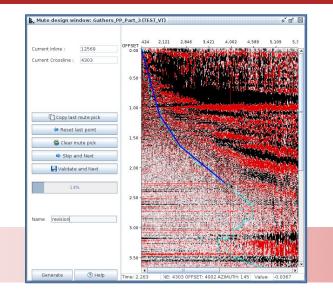
Facies time-depth conversion and "most of " upscaling

Conv	vert curve(s) ×	Guess window length
Law	TD_TWT	Maximum Frequency (Hz) 40
		Resolution Optection
Method	Time/Depth conversion (facies upscaling)	
Parame	eters	Ok Cancel
Overs	ampling step (ms) 0.1	
Upsca	aling window length (ms) 6.2	-
🖌 İğr	nore null values	
		2
⊤Time	e step selection	
Ou	tput step (ms) 2	
	rvey NEW_SURVEY ▼ Set from survey	
Output na	ame LITHOLOGY	
Gaiput Ha		
		1
	Ok Cancel <u>H</u> elp	

Handle your feasibility directly in InterWell with the cross-plot functionalities

RELEASE NOTES | InterWell 2023

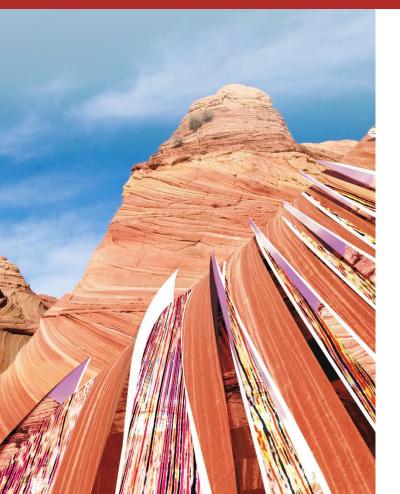
InterWell


Release 2023.1

What's new in data conditioning ?

Gather conditioning : mute and new pre-processing

•


New processes for gather conditioning :

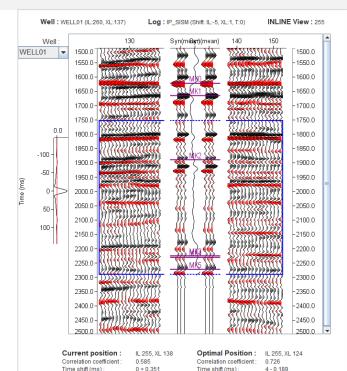
- Offset-Azimuth filter: Applies a filter (median or medium) to the data based on a distance from the offset and azimuth.
- Trim statics: alignment before stack by taking a "super-trace" (partial stack) as a reference.
- Mutes: hides the traces for the current and the next processes
 - Variable angle/offset—Define a curve using different points (whether converted to angles).
 - Free after picking.

- Interactive picking of the mute in a regular grid of the gathers.
- Handy reset/skip/clear functionalities to edit current picking.
- Optional reference mute curve, for a picking review. If unused, the previous mute is plotted for more consistency.
- Save and 3D extrapolation of the mute for be used during gathers conditioning.

Angle-Stack Generation Window (TEST_VT)	nd offsets selection / Parallel computing parameters
Inputs and responsessing Angle range selection Dimension and	
The velocity and the replace	ement velocity will be used to convert the offset in angles
Gather Gather_PP_Part2 (Offset)	▼
P Velocity VEL_1_2Hz (Interval)	v
S Velocity	▼
Replacement velocity (P) 1.400	
Gathers pre-processing	
NMO Correction	Process parameters
Variable angle mute Offset-Azimuth filter	Super trace
Trim statics - static shifts Trim statics - dynamic shift Offset-Azimuth filter	Center offset (m) 2000
Offset filter	Distance to reference (m) 1000.0
Frequency filter	Shift detection
Attenuation correction	Minimum time (ms) 1500
Static shift	Maximum time (ms) 4500
	Zero shift outside range 💌
	Correlation sample length 50
	Maximum sample shift 4
	Enable vertical smoothing
	Enable lateral smoothing
The stack on	w supports the PS data

RELEASE NOTES | InterWell 2023

InterWell


Release 2023.1

What's new in seismic inversion workflow ?

Porting of the calibration process in a more modern language, bringing along significant improvements

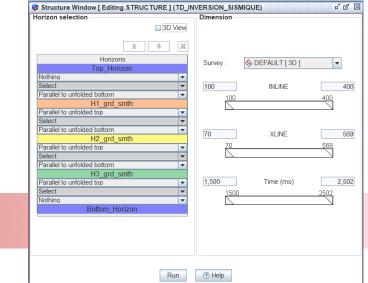
- Deviated wells are more precisely considered.
- Possibility to select shifts not centered in Oms. Traces rejected only if dead traces or negative correlation.
- Application of the shift with oversampling to be more precise while detecting the phase. Angular mean instead of regular mean for phase estimation.
- The location must be saved once validated by the user, for a more fluent experience.
- Gradual colorbar in seismic window to better visualize areas with high/low energy.

Normalization coefficient : 0.792 Output VPA length (ms) :

Phase

Normalization coefficient : 0.824

Save user location


Revamp of the structure module, Dip analysis more accessible

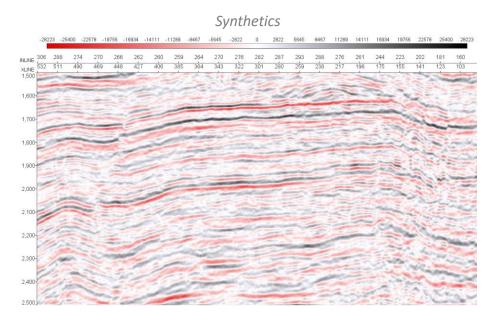
- The structure module has been revamped and simplify. The stratigraphic order and chronographic order is now the same.
- A fully defined survey must be informed. The horizons must be in a survey compatible (same transformation, same limits).

Model-based acoustic inversion window [Editing IN	VERSION] (TD_INVERSION_SISMIQUE) 🗖 🗹 🛛
Data Selection Run Parameters Inversion Settings	
Data selection	Sub volume selection
a priori model : MODELING Seismic Wavelet Norm. FULLSTACK FULL_0 - FULL_0 M None	100 INLINE 400 100 100 400 100 200 400 100 XLINE 569 70 569
	Visual selection Time limit 1,500 Time (ms) 2,502 1500 2502
Add Wavelet Rem	O Horizon limit ✓ H1_grd_smth_unfolded [STRUCTURE] ✓ Upper limit (dt)ms Lower limit (dt)ms Orivention : -/+ for above/below
Run	(?) Help

13

 DipX and DipY created from Dip Analysis directly accessible while selecting the parameters of the inversion.

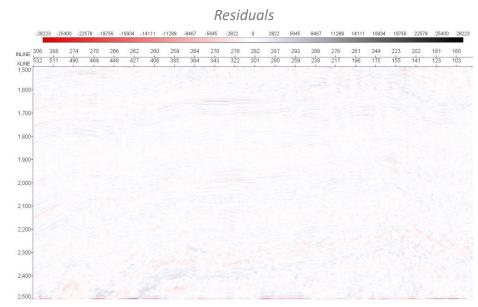
Single run selection, multiple templates


QC on sections window (TD_INVE)	RSION_SISMIQUE) 🗗 🗹
Select step : O Mis-Alignment Correc	ction
Inversion runs	QC Templates Inversion & a priori model
INVERSION2 INVERSION4 INVERSION_HIGH_ENERGY	 Initial, synthetic & residuals Initial /ul>
Settings O Inline/CrossLine View	
Select section orientation :	100 INLINE 400
	100 400
ArbitraryLine View	
Select arbitrary line : AL	•
	Run Cancel (?) Help

- Create a view (IL,XL, Arbitrary line) according to templates.
 - For inversions, focus on the comparison between seismics (original and synthetics) and optimization of the elastic model (initial to optimal).
 - For RNMO, comparison between shifts and seismic vertical scale, comparison between seismic before and after correction.
- Automatically sets the colors and limits according to the data to visualize.
- This QC type only provides views without saving any run.

r 🗹 🖂 QC on sections window (TD INVERSION SISMIQUE) Select step : OMis-Alignment Correction Inversion Inversion runs QC Templates **INVERSION** Inversion & a priori model INVERSION2 Initial, synthetic & residuals INVERSION4 INVERSION HIGH ENERGY Settings Inline/CrossLine View INLINE Select section orientation 100 400 ArbitraryLine View AL Select arbitrary line : -Run Cancel Help

Single run selection, multiple templates


One window by template

rø' 🛛 QC on sections window (TD INVERSION SISMIQUE) Select step :

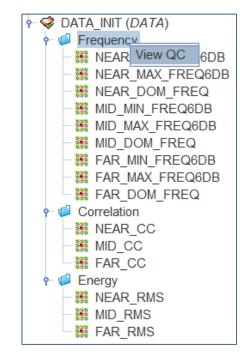
Mis-Alignment Correction
Inversion Inversion runs QC Templates **INVERSION** Inversion & a priori model INVERSION2 Initial, synthetic & residuals INVERSION4 INVERSION_HIGH_ENERGY -Settings Inline/CrossLine View INLINE Select section orientation 100 400 ArbitraryLine View AL Select arbitrary line : -Run Cancel Help

Single run selection, multiple templates

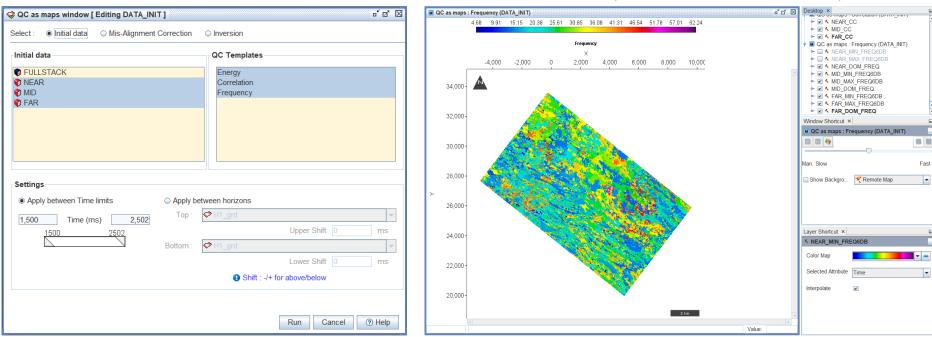
Multiple data selection, multiple templates

♀ QC as maps window [Editing DATA_INIT]	¤ [¢] ∅ [*] ⊠
Select : Initial data Mis-Alignment Corre	ection 🔘 Inversion
Initial data	QC Templates
 FULLSTACK NEAR MID FAR 	Energy Correlation Frequency
Settings O	Apply between horizons
	Top : 🗇 H1_grd
1,500 Time (ms) 2,502 1500 2502	Upper Shift 0 ms
	ottom : 🗢 H1_grd 👻
	Lower Shift 0 ms
	Shift : -/+ for above/below
	Run Cancel (?) Help

- Extract at constant times or between horizons and creates a views to capture key informations on data or runs.
- This QC type creates a run which can be restored.
- Automatically sets the colors and limits according to the data to visualize.
- Adapted QCs depending on the run type.

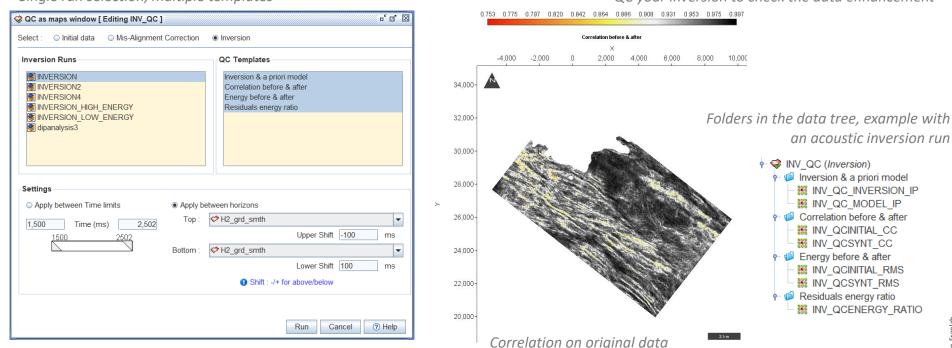


ਾ ਕੇ ਕਿ


Ø QC as maps window [Editing DATA_INIT]

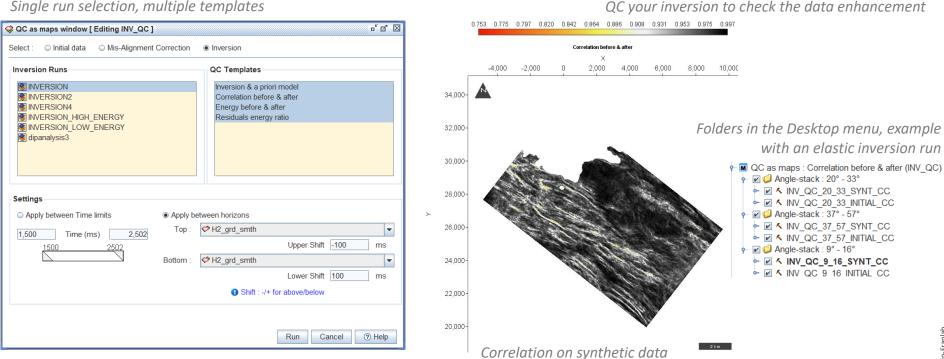
Select :	O Inversion
Initial data FULLSTACK NEAR MID FAR	QC Templates Energy Correlation Frequency
Settings Apply between Time limits Apply between Time limits	veen horizons
	➡ H1_grd
1500 2502	Upper Shift 0 ms
Bottom :	H1_grd
	Lower Shift 0 ms
	Shift : -/+ for above/below
	Run Cancel ⑦ Help

Maps extracted and stored in the survey tree



Multiple data selection, multiple templates

Map view with the same limits to compare the data

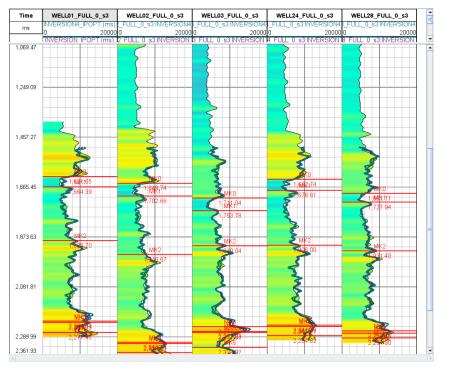


Single run selection, multiple templates

QC your inversion to check the data enhancement

Single run selection, multiple templates

Multiple run selection, supports calibrated and input wells

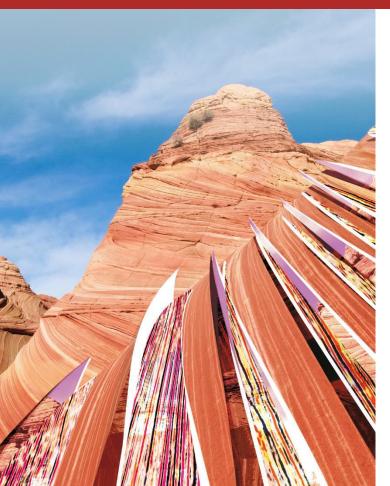

🕹 QC at wells	window [Editing Q	C_atWells]				r ⊠'⊠
Select step :	 Modeling In 	version				
Inversion ru	ns					
INVERSI						
INVERSI	ON_HIGH_ENERGY					
INVERSI dipanaly	ON_LOW_ENERGY					
g upanaly:	5150					
Well Name	Filter	gs Filter		Comparable cubes if		
		IP IS IS IR RHO		Comparable cubes in	1 A A A A A A A A A A A A A A A A A A A	IP IS IS RHO
The avai	lable loas must be in tin	ne domain, regular, with	a sampling rate as	defined in the survey definition.		
Available Log			, ,	Selected Logs		
Well	Log	Log Type		Well	Log	Log Type
WELL28	IS_SISM	S-Impedance	^	WELL02_FULL IP_	SISM	P-Impedance
WELL28	IP_SISM	P-Impedance	=	WELL28_FULL IP_	SISM	P-Impedance
WELL28	RHOB_SISM	S-Impedance		WELL03_FULL IP_	SISM	P-Impedance
WELL28	PHIE_SISM	S-Impedance	1	WELL24_FULL IP_	SISM	P-Impedance
WELL03	IS_SISM	S-Impedance		WELL01_FULL IP_	SISM	P-Impedance
WELL03	IP_SISM	P-Impedance				
WELL03	RHOB_SISM	S-Impedance				
WELL02	IS_SISM	S-Impedance				
WELL02	IP_SISM	P-Impedance	-			
WELL02	RHOB_SISM	S-Impedance				
	Сори	the sele	ction f	rom a refer	ence	model
One window	w by well 💿 One v	vindow by type			Run	Cancel (?) Help

- Extract along the well trajectories and creates a view to compare the original logs with the 2D/3D volumes.
- This QC type creates a run which can be restored.
- The modes (By Well, By Type) can be changed from the study tree regardless the choice in the GUI.
- Automatically sets the colors and limits according to the data to visualize.
- Well designed to support blind wells.

Multiple run selection, supports calibrated and input wells r (7 X & QC at wells window [Editing QC_atWells] Select step :
Modeling Inversion Inversion runs **INVERSION** INVERSION2 INVERSION HIGH ENERGY INVERSION LOW ENERGY dipanalysis3 Well Name Filter Logs Filter Comparable cubes if any P IS RHO The available logs must be in time domain, regular, with a sampling rate as defined in the survey definition. The origin must also be on the grid, Selected Logs Available Logs Well Well Log Log Log Type Log Type WELL28 IS SISM S-Impedance WELL02 FULL ... IP SISM P-Impedance WELL28 IP SISM P-Impedance WELL28 FULL ... IP SISM P-Impedance WELL28 RHOB SISM WELL03 FULL ... IP SISM S-Impedance P-Impedance PHIE SISM WELL24 FULL ... IP SISM WELL28 S-Impedance P-Impedance WELL03 IS SISM WELL01 FULL ... IP SISM S-Impedance P-Impedance WELL03 IP SISM P-Impedance WELL03 RHOB SISM S-Impedance WELL02 IS SISM S-Impedance WELL02 IP SISM P-Impedance WELL02 RHOB SISM S-Impedance Copy the selection from a reference model One window by well One window by type Run Cancel Help

Compare the initial logs (color filled) with the runs (colored curves)

RELEASE NOTES | InterWell 2023



InterWell

Release 2023.1

What's new in seismic characterization ?

Discriminant analysis, renamed as supervised analysis, now supports neural network in addition to the discriminant analysis.

	alysis Window (FINAL202	0)	r" Ø" D
Settings			Sub volume selection
A priori samples :	apriori_lithology	-	100 INLINE 400
Attribute 1 :	IP	•	
Attribute 2 :	IS	•	70 XLINE 569 70 569
Attribute 3 :	IP	-	
Facies :	LITHOLOGY	•	Visual selection
nput attribute volumes :			Apply between Time limits
IP		IS	1,500 Time (ms) 2,502
INV_ELAS.IPOPT	INV_ELAS.IS	SOPT	1500 2502
Discriminant analysis HyperParameters	O Neural Netwo	rk	Apply between horizons Top: H2_grd
	obabilities	equiprobable	Top : H2_grd v Upper Shift ms
Discrimination Algorith	m: © Linear		Bottom : H2_grd 💌
-	Quadratic		Lower Shift ms
		Test prediction	

- Supported in the standard and the nested mode.
- Supported for the test prediction.

New classifier : neural network for supervised classification

Standard parameters, to be tested in every case

HyperParameters	
Standard Advanced	
Hidden layers	2
Hidden nodes	100
Tests number	100 -

Advanced, to go deeper in the analysis

HyperParameters	
Standard Advanced	
Learning Rate	0.01
Tests proportion (%)	
	5 10 15 20 25
Seed value	372677
	I

Structure of the neural network

- •Hidden layers : the number of hidden layers to be considered in the model.
- •Hidden nodes : the number of hidden nodes per hidden layer.

Validation and partitioning parameters

- •Test number : the number of tests performed to find the most predictive model.
- •Test proportion : the proportion (in %) of the training samples to be randomly left out for cross-validation of the model during training (blind tests).

Initialization and internal parameters

- •Learning rate : the learning rate of the model.
- •Seed value : the seed value to initialize the weights distribution before starting training the model.

User friendly approaches for seismic characterization : law by facies

After a supervised analysis, this functionality allows to assign a law to each facies (constant, linear, quadratic).

Property laws by facies (TUTORIAL)	r ⊠ ⊠		
Input Volume ACOUSTIC_INV_01.IPOPT Facies classification runs DISCRIMINATION x refers to the input volume property	Edit Clear		
	Law 0.0 0.0 3E-7*x* + 0.0097*x + 91.138 3E-7*x* + 0.0097*x + 91.138	 Add law : 3 × Law Quadratic Property = x0 + x1 * x + x2 * x² x0 91.138 x1 -0.0097 x2 0.0000026263 	to the one of the one
	Run Cancel	Apply Cancel	Suitable for porosity, VSH, TOC estimation

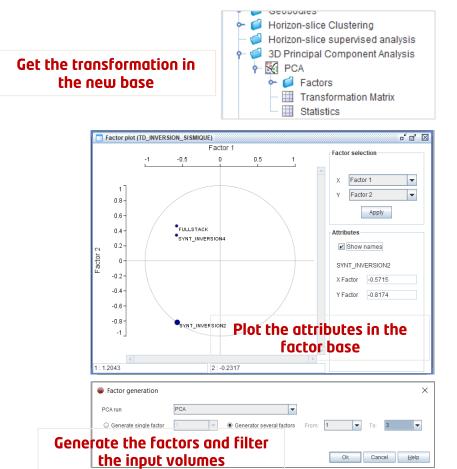
After a supervised analysis, this functionality allows to assign a law to each facies, defined as a probability value (constant, linear, quadratic).

Property laws using probabilities (TUTORIAL)			r 🛛 🖂
Input Volume ACOUSTIC_INV_01.IPOPT	•	x refers to the input volume pro	operty Edit Clear
Facies classification runs	•	Case P1 >= 0.5 P1 <= 0.3	Law 2.6263E-7*x ² + -0.0097*x + 91 0.0
Probability 1 DISCRIMINATION_Proba_Facies_4	-		0.0
Minimum 0.3 Maximum 0.5 Use another probability volume Probability 2 DISCRIMINATION_Proba_Factes_1		Facies 1 2 3 4	In use
Minimum 0 Maximum 1 Outside the ranges, the defined laws are applied. Inside the ranges, the estimation is weighted by the distance to the ext probability values.	Law Prop	dd Iaw : 1 × Quadratic • werty = x0 + x1 * x + x2 * x² 91.138 •	Run Cancel
	<u> </u>	0.0097	

Use 1 or 2 probability cut-offs to define a facies and assign a law. The final value will progressively vary from the first law to the second law according to the probability value(s).

Suitable for porosity, VSH, TOC estimation...

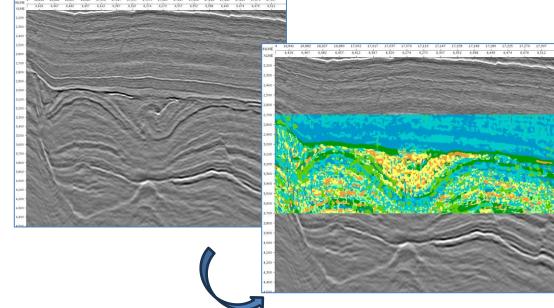
The Principal Component Analysis allows exploring the redundancy of the attributes


3 3D PCA Window (TD_INVERSION_SISMIQUE) puts	다 Dimensions
puts	Dimensions
INVERSION4.IPOPT 🚽 🛃	100 INLINE 400
Volumes	100 400
FULLSTACK	
INVERSION.SYNT	
INVERSION4.SYNT	70 XLINE 569
	70 569
	Apply between Time limits
	Apply between Time limits
	1,500 Time 2,502
	1500 2502
	Apply between horizons
	Top : 🗢 H1_grd 🗨
	Upper Shift 0 ms
	Bottom : 🗢 otier_horizon_crossingH1_4 💌
	Lower Shift 0 ms
	Shift : -/+ for above/below
Learning decimation	
IL decimation 5 × XL decimation 5 ×	
sults	
Variance proportion Cumulative variance proportion	
Dataset Name PCA2	Run (?) Help
Dataset Name PCA2	Kun (7) Help

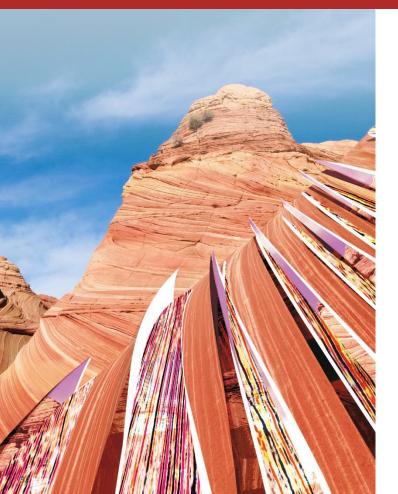
Applied in 3D, with no attribute limit.

PCA : check the redundancy between attributes

3D PCA Window [Editing PCA] (TD_INVERSION_SISMIQUE)	r" 🛛
buts	Dimensions
FULL_DEPTH 🚽 🛃	100 INLINE 400
Volumes	100 400
FULLSTACK	
SYNT_INVERSION2	1
SYNT_INVERSION4	70 XLINE 569
	70 569
	Apply between Time limits
	1,500 Time 2,502
	1500 2502
	Apply between horizons
	Top : 🗢 H1_grd_smth 💌
	Upper Shift 0 ms
	Bottom : 🗇 otier_horizon_crossingH1_4
	Lower Shift 0 ms
	Shift : -/+ for above/below
Learning decimation	
IL decimation $5 \times XL$ decimation 5×7	
suits Variance proportion © Cumulative variance proportion	
Get th	e variance restitution
Dataset Name PCA2	Run (?) Help


3D Clustering

Find typical patterns, in 3D, based on key attributes

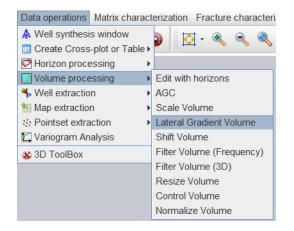


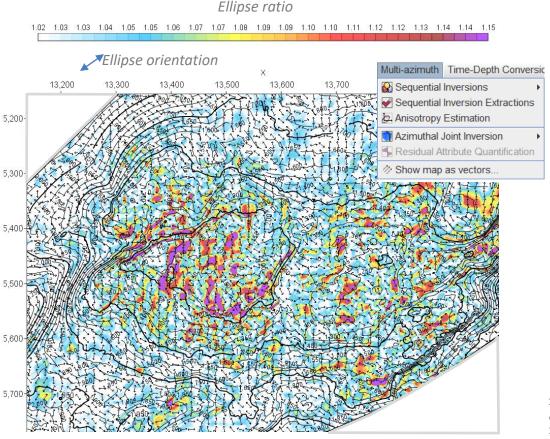
Applied in 3D, with no attribute limit.

Unveil typical response from key attributes

RELEASE NOTES | InterWell 2023

InterWell


Release 2023.1


What's new in the advanced workflows ?

Azimuthal workflow : arrow display and gradient volume

- More accessible arrow display, even for volume ellipse fitting mode, by selecting the option in the Top menu.
- Lateral gradient attribute to support the anisotropy volume interpretation by deleting any other potential anisotropy source.

4D inversion workflow : enhancement for vintage pre-alignement

Initial law nterWell 4D Initial Law Window / Editing 94, 10 o* 13° 18 a.shift analysis Time-shift nost-▼ inv_10_newAl Shifts example (ms), combining RNMO and Horizoninv_94_newAl -**Optimizing shifts between** Use IP datase Use IS dataset based law, after 3D filtering, loaded as Custom law 3D Prohe siz impedance models Maximum time shift -13.50 -12.00 -10.50 -9.00 -7.50 -6.00 -4.50 -3.00 -1.50 0.00 1.50 3.00 4.50 6.00 7.50 9.00 10.50 12.00 1.194 1.208 1.236 Run (7) Help Horizon-based law New 1.00 Horizon-based Law Window [SLEIPN] ດ້ອີ ມີ Monito 1.050-INV_FULL_94p01 -INV_FULL_10p10 -1,100-***** 1,150-1 Top_Utsira_94p01_grd_smt op_Utsira_94p01_grd_smth Modeling shifts 4D Inversion : according to 1,200-**Registration laws** horizon pairs 1.250-For top unit Constant to first shifts Tends to 0 ms For bottom unit Constant to last shifts 1,300-Run (?) Help 1 350 Custom law New Rustom Law Window [SLEIPNER] ต์ เช้ โ Reference Monito 🚰 Apply shift to another volume (SLEIPNER) 🖬 🗹 🔀 INV FULL 94p01 -INV FULL 10p10 Inversion Free shift import or Volume selection Fullstack 01p01 Ŧ All connected to Free data selection as I Revert shift sign mixing methods Warping and 4D joint @Beicip-Franlab Full to 94 New Attribute Name mid 01p07.SHIFT 68 o far mid 01o07 SHIET 60 Apply any **shift run** to inversion 10p10 newAl ifp hor.S 001 and RNMO 99 94 Run 🕜 Help to01 and RNMO 99 94 any InterWell seismic 10p10 newAl ifp hor ! Run INB_94p01_RNMO_99_94_4_50

For further information, please contact your regional office or visit www.beicip.com

Europe, Africa, Asia: HQ in Paris Middle East South America North America Mexico India info.rio@beicip.com info@beicip.com info.gulf@beicip.com info.houston@beicip.com info.mexico@beicip.com info.india@beicip.com Tel: +91 9004908290 Tel: +33 1 47 08 80 00 Tel: +973 17 21 11 50 Tel: +55 21 9 8254 5000 Tel: +1 281 293 85 50 Tel: +52 9931 46 10 63