TECHNICAL SPECIFICATIONS

Software Presentation

InterWell is Beicip-Franlab's seismic inversion software. Core inversion workflows and algorithms are developed by IFPEN and are enriched by functionnalities and attributes from Beicip-Franlab consulting experience. Software environment is based on the INT Viewer platform.

InterWell unified workflow offers the following key stages:

- Seismic data QC and conditioning
- Multi-well and multi-cube wavelet estimation
- Initial impedance modeling for elastic parameters
- Deterministic acoustic/elastic 3D inversion
- VTI deterministic elastic inversion
- Interbed multiple management during inversion process
- Acoustic/elastic geostatistical inversion
- Multi-azimuth inversion and 4D inversion workflows
- Lithology prediction
- Seismic characterization

Data Management

Benefits from all INTViewer platform capabilities (import/Export, Visualization, QC, calculator).

DATA IMPORT/EXPORT

- 3D seismic, velocity, and anisotropy data in SEG-Y and binary files format
- 3D seismic gather in SEG-Y format
- Well data in LAS format (3.0)
- Horizons, maps, tables, and pointsets in ASCII format
- Wavelet in ASCII format
- 3D anisotropy parameters and attribute data
- Direct connection with EasyTrace database for transfer of:
 - Input well logs
 - Results extracted at wells
 - EasyTrace tables for Discriminant Analysis training data

DATA EDITING AND QC

Horizon management

Data extraction and calculators for Wells, Maps and 3D volumes Automated QC displays on Wells, Maps and sections

Functionalities & Algorithms

ELASTIC SEISMIC DATA REGISTRATION

- Residual NMO Misalignment QC and correction between angle stacks using a volumetric analysis and optimization method.
- Generation of cube-to-cube cross-correlation and noise maps

MULTI-TRACE COHERENCY ANALYSIS

• Estimation of seismic signal, noise and seismic bandwidth

- Seismic signal spectral analysis
- Stastistical estimation of wavelet amplitude spectrum for further wavelet
 estimation

WELL-TO-SEISMIC CALIBRATION

- Hybrid approach for wavelet estimation (statistical and deterministic)
- Multi-well wavelet extraction and optimization
- Time shift estimation through envelop of intercorrelation
- Wavelet phase and energy determination through multi-trace & multi-well
 analysis
- Variable phase and amplitude wavelet estimation using a least square optimization method
- Inter-bed multiple management option to detect multiple generator and maximize calibration accuracy
- Flexible editing of calibrated wells location and time-shift
- Energy normalization map from wells using several interpolation methods

MULTI-CUBE CALIBRATION

- Multi-cube calibration Quality Factor
- Determination of optimal well position taking into account different singlevolume calibration sessions

INITIAL IMPEDANCE MODELING

Structural framework definition

Building a geological framework for elastic parameter modeling

- Step by step integration of horizons in a structural model
- Geological macro-units
- Depositional model definition within each macro-unit

Model definition

- Operation of an experimited when a firms do not and do not
- Creation of an a priori distribution of impedance and density
- Well data interpolation along structural and stratigraphic features
- Modeling of low frequency component using seismic velocity data, whenever relevant

DETERMINISTIC INVERSION

Acoustic and Elastic Bayesian inversion

Inversion products: IP, IS, RHO, Synthetics, Reflection coefficients and Residuals seismic for each angle stack

Additional available elastic parameters: Poisson Ratio, Vp/Vs Ratio, LamdbaRho, MhuRho, Gradient and Intercept on optimal inversion results Taking into account data quality and influence by tuning inversion parameters:

- Bayesian inversion approach
- Paremeterization of inversion algorithm through the use of a priori uncertainty assessments
- Volume-dependent tuning of input seismic data volumes
- Optimization through a multi-channel conjugated gradient method
- Monitoring of inversion cost function
- Inversion on full-cube, sub-cube or around a surface

Advanced inversion capabilities

- HPC capabilities to minimize computing time
- Inter-Bed Multiple Management (IBMM) technology to attenuate the impact
 of multiples from a contaminated dataset on the inversion results
- Advanced inversion parameters: IP, IS, Rho min/max and Poisson Ratio constraints
- Laterally variable wavelet energy

Integration of VTI (Rüger) anisotropy model for enhanced inversion results
 GLOBAL STOCHASTIC INVERSION

Geostatistical inversion, algorithm developed by Cerena (Instituto Superior Tecnico)

- Use of direct stochastic sequential simulations
- Global optimization technique based on the trace-to-trace mismatch between real and synthetic seismic
- Possibility to use deterministic inversion results as secondary variable
- Uncertainty analysis

AZIMUTHAL INVERSION

- Complete sequential multi-azimuth inversion workflow
- Determination of isotropic and anisotropic contributions
- Assessment of horizontal anisotropy parameters through statistical ellipse fitting

4D JOINT INVERSION

- Complete workflow for Time-lapse inversion
- A priori warping using a multi-channel correlations method
- Physical warping process integrating both P-waves cinematic and impedance variations

• Multi-vintage acoustic and/or elastic post- and/or pre-stack inversion

Results Analysis

AUTOMATED DEDICATED QC

• Wells

- Sections through wells displaying well paths, logs, markers, seismic horizons along with observed seismic and/or a priori models and/or inversion results
- Automatic display generation for comparisons between initial logs, a priori models, inverted impedance and/or between observed and synthetic traces at wells
- Available for blind wells testing

Wavelets

- Display of the envelop of inter-correlation functions between observed and synthetic traces (time-shift detection)
- Cross-plots and histograms integrating all wells or sub-sets of wells for optimizing the time shift, the phase and the energy
- Mapping of estimated parameters and corresponding correlations of observed vs. synthetic trace, to check the accuracy of the estimated parameters in the vicinity of the wells / intersections
- Correlation coefficient, Phase, Time Shift and Energy maps around wells
- Average calibration attribute maps (multi-cube calibration)
- Wavelet and corresponding phase & amplitude spectrum
- Display of multiple wavelets, comparison of amplitudes spectra, available for multi-cube stability analysis or input versus inversion results QC
- Sections
 - Automatic combined sections display showing a user-defined selection among inversion results (impedance, synthetic, residuals), input seismic and a priori models for easy comparison
- Cross-plots
 - Cross-plots available between inverted traces and well logs
- Cross-plots between inverted parameters such as IP vs. IS (or calculated Vp/Vs or PR)

SEISMIC CHARACTERIZATION TOOLS

 $\label{eq:comprehensive} Comprehensive set of functionalities and attributes for seismic inversion and reservoir characterization workflows$

- Filters
- Available for horizons and 3D volumes
- Advanced calculator
- Available for single horizon and up to two 3D volumes
- Seismic data QC
- Noise maps and energy maps
- Using a constant time window or around an horizon

Inversion QC

- Cross-correlation maps between two 3D volumes
- Energy ratio maps between two 3D volumes
- Noise maps before/after inversion
- Frequency analysis on maps
- Minimum, maximum, dominant frequency - Analysis at -6dB or -10dB
- Statistics maps extraction
- Average, minimum, maximum, variance, standard deviation, RMS
- Available around one horizon or in an interval defined by two horizons
- Possible use of threshold to derive proportion maps in an interval

LITHO SEISMIC CHARACTERIZATION FROM INVERSION RESULTS

Complete workflow for litho-seismic characterization from elastic inversion results

- Dominant lithology prediction using discriminant analysis
- Generation of volumes of dominant lithology and associated probabilities of good assignment

SEISMIC CONSTRAINTS GENERATION

Trend modeling to estimate key reservoir properties, with the possibility to derive maps from inversion results

Extensions & Customization

Based on the open Java™-based INT platform (http://intviewer.net/products/ intviewer.html) allowing a high level of customization and extensions ● Powerful and flexible GUI

- Based on the open source Netbeans Rich Client Platform (RCP) for creating and managing plugin functionality
- Existing plug-ins available among spherical divergence correction, Butterworth filter, binning 4D.
- Interoperability with Python and the Seismic Workbench

Systel Requirements

• PC Windows 7

- PC Linux 64 bits RedHat6 or compatible
- RAM: 8 GB or more (minimum: 4 GB)
- CPU: x86 and x86-64 processors
- Graphics board: NVIDIA recommended (or any graphic card compatible with OpenGL)

Beicip-Franlab Headquarters 232, avenue Napoléon Bonaparte 92500 Rueil-Malmaison - France Tel.: 33 1 47 08 80 00 *Email: info@beicip.com*

