TECHNICAL SPECIFICATIONS

Software Presentation

InterWell is Beicip-Franlab’s seismic inversion and reservoir characterization software. Available on Windows and Linux platforms.

InterWell unified workflow offers the following key stages:
- Seismic data conditioning and QC
- Multi-well wavelet estimation and multi-cube well-to-seismic calibration
- Prior impedance modeling for elastic parameters
- Deterministic acoustic/elastic inversion
- VTI deterministic elastic inversion
- Acoustic/elastic geostatistical inversion
- Multi-component, azimuthal and 4D inversion workflows
- Lithology prediction and trend modeling

Functionality & Algorithms

Seismic Data Conditioning and QC
- NMO correction and stacking of migrated gathers
- Residual NMO Misalignment correction between angle stacks using a volumetric analysis and optimization method
- Generation of cube-to-cube cross-correlation, noise maps, and more QCs

Multi-Trace Coherence Analysis
- Estimation of seismic signal, noise and seismic bandwidth
- Statistical estimation of wavelet amplitude spectrum
- Performed in constant time window or along an horizon

Well-to-Seismic Calibration
- Hybrid approach for wavelet estimation (statistical and deterministic)
- Multi-well wavelet extraction and optimization
- Time shift estimation through envelop of intercorrelation
- Wavelet phase & energy determination via multi-trace & multi-well analysis
- Variable phase and amplitude wavelet estimation using a least square optimization method
- Inter-bed multiple modeling option to detect multiple generator and maximize calibration accuracy
- Flexible editing of calibrated wells location and time-shift
- Energy normalization map from wells using several interpolation methods

Multi-Cube Calibration
- Well-to-seismic calibration and determination of optimal well position taking into account different single-volume calibration sessions

Prior Impedance Modeling
- Structural framework
 - Building a geological framework for guiding the prior model and the inversion
 - Integration of horizons and deposit modes
 - Definition of macro-units for parameter mapping
- 3D dip analysis from seismic data to define the inversion correlation lines
- Prior model for elastic parameters
 - Creation of an a priori distribution of impedance and density
 - Well data interpolation along structural and stratigraphic features
 - Modeling of low frequency component using seismic velocity data
 - Possibility to use an external prior model or to derive a new prior model from a previous inversion result

Deterministic Inversion

Acoustic and Elastic Seismic Inversion with Bayesian Approach
- Inversion products: IP, IS, RHO, synthetic seismic, reflection coefficients and residuals seismic for each angle stack
- Additional available elastic parameters: Poisson Ratio, Vp/Vs Ratio, LamdbaRho, MhuRho, Intercept and Gradient
- Taking into account data quality and influence by tuning inversion parameters:
 - Parameterization of inversion algorithm using prior uncertainty assessments
 - Balancing the influence of input seismic data volumes
 - Optimization through a multi-channel conjugated gradient method
 - Monitoring of inversion cost function
 - Inversion on full-cube, sub-cube or around a surface
 - Fast full-seismic option available

Advanced Inversion Capabilities
- HPC capabilities to minimize computing time
- Inter-Bed Multiple Modeling (IBMM) technology to attenuate the impact of multiples from a contaminated dataset on the inversion results
- Laterally variable wavelet energy
- Integration of VTI (Rüger) anisotropy model for enhanced inversion results

Azimuthal Inversion
- Complete sequential multi-azimuth inversion workflow
- Determination of isotropic and anisotropic contributions
- Assessment of horizontal anisotropy parameters via statistical ellipse fitting

Time-Lapse 4D Joint Inversion
- A priori warping using a multi-channel correlations method
- Physical warping process integrating both P-waves cinematic and impedance variations
- Multi-vintage acoustic and/or elastic post- and/or pre-stack inversion

Multicomponent Joint Inversion
- Complete workflow for multicomponent (Pp, Ps, SV, SH) inversion
- Scaling law computation for the different domains
- Multicomponent post- or pre-stack inversion

Global Stochastic Inversion
- Use of direct stochastic sequential simulations
- Global optimization technique based on the trace-to-trace mismatch between real and synthetic seismic
- Possibility to use deterministic inversion results as secondary variable
- Possibility to use external distributions to constrain the simulations
- Uncertainty analysis through the analysis of several simulations
Results Analysis

AUTOMATED DEDICATED QC
- **Wells**
 - Sections with customizable well projection
 - Automatic display for comparison between initial logs and inversion results
 - Available for blind wells testing
- **Wavelets**
 - Display of the envelop of inter-correlation functions between observed and synthetic traces (time-shift detection)
 - Cross-plots and histograms integrating all wells or sub-sets of wells for optimizing the time shift, the phase and the energy
 - Mapping of estimated parameters and corresponding correlations of observed vs. synthetic trace, to check the accuracy of the estimated parameters in the vicinity of the wells / intersections
 - Correlation coefficient, Phase, Time Shift and Energy maps around wells
 - Average calibration attribute maps (multi-cube calibration)
 - Wavelet and corresponding phase & amplitude spectrum
 - Display of multiple wavelets, comparison of amplitudes spectra, available for multi-cube stability analysis or input versus inversion results QC

Sections
- Automatic combined sections display showing a user-defined selection among inversion results, input seismic and prior models
- Cross-plots
 - Cross-plots between inverted parameters such as IP vs. IS (or calculated Vp/Vs or PR), and between inverted traces and well logs.
- Maps
 - Fast and accurate extractions of various attributes along/between horizon(s)
 - Display of isolines over any map view
 - Design of arbitrary lines stored as a survey data

SEISMIC CHARACTERIZATION TOOLS
Comprehensive set of functionalities and attributes
- **Filters**
 - Available for horizons and seismic data
- **Advanced calculator**
 - Available for horizon and seismic data
- **Seismic data QC**
 - Noise maps and energy maps
 - Using a constant time window or around an horizon
- **Inversion QC**
 - Cross-correlation maps between two sections/volumes
 - Energy ratio maps between two sections/volumes
 - Noise maps before/after inversion
- **Frequency analysis on maps**
 - Minimum, maximum, dominant frequency, analysis at -6dB or -10dB
 - Spectral decomposition
- **Statistics maps extraction**
 - Average, minimum, maximum, variance, standard deviation, RMS
 - Available around one horizon or in an interval defined by two horizons
 - Possible use of threshold to derive proportion maps in an interval
- **Fast-track AVO analysis**
 - R0-G cross-plots and direct highlight on seismic data

LITHO SEISMIC CHARACTERIZATION AND SEISMIC CONSTRAINTS GENERATION
Complete workflow for litho-seismic characterization from inversion results
- Dominant lithology prediction using discriminant analysis
- Generation of volumes of dominant lithology and associated probabilities of good assignment
- Trend modeling to derive maps of key reservoir properties combining inversion results and well data

DEDICATED CHARACTERIZATION OPTIONS FOR ADVANCED WORKFLOWS
- Ellipse fitting for anisotropy intensity and orientation quantification in azimuthal workflows
- 4D effects quantification modules
- Discriminant analysis using 3 variables in multi-component workflows

Data Management
InterWell integrated survey migrator automatically ensures compatibility with databases and runs from previous versions.

DATA IMPORT/EXPORT
- 2D/3D seismic, velocity, and anisotropy data in SEG-Y and binary files format
- 2D/3D seismic gather in SEG-Y format
- Well data in LAS format (3.0), automatic projection on 2D lines
- Horizons, maps, tables, and pointsets in ASCII format
- Wavelet in ASCII format
- 2D/3D anisotropy parameters and attribute data
- Direct connection with EasyTrace database for transfer of input well logs / results extracted at wells / tables for Discriminant Analysis training data / external distributions for geostatistical inversion

DATA EDITING AND QC
- Horizon edition through various gridding, smoothing, merge options
- Data extraction and calculators for wells, maps, sections and volumes
- Automated QC displays on wells, maps, sections and volumes

Extensions & Customization
Based on the open Java™-based INT platform (http://intviewer.net/products/intviewer.html) allowing a high level of customization and extensions
- Powerful and flexible GUI
- Based on the open source Netbeans Rich Client Platform (RCP) for creating and managing plugin functionality
- Existing plug-ins available among spherical divergence correction, Butterworth filter, binning 4D.
- Interoperability with Python and the Seismic Workbench

System Requirements
- PC Windows 7 and Windows 10
- PC Linux 64 bits RedHat6 or RedHat 7 or compatible
- RAM: 16 GB or more (minimum: 8 GB)
- CPU: x86 and x86-64 processors
- Graphics board: NVIDIA recommended (or any graphic card compatible with OpenGL)

Beicip-Franlab Headquarters
232, avenue Napoléon Bonaparte
92500 Rueil-Malmaison - France
Tel: 33 1 47 08 80 00
Email: info@beicip.com

An IFP group company